Course Syllabus

SUNY MEC450/550: Mechatronics Spring 2023

Course Detail

Title: MEC450/550: Mechatronics

Credit: 3

Classroom Location: B105

Prerequisites: MEC310, MEC316, MEC411

Instructor Detail

Instructor: Seung-Bok Choi, Ph.D.

Office: **B621**

Office Hours: Tuesday 10:00-11:50

Phone: +82-32-x626-1803 (office), +82-10-3109-7329 (mobile)

Email: seungbok.choi@sunykorea.ac.kr

Website: www.ssslab.com

Course Description

An introduction to the design, modeling, analysis, and control of mechatronic systems (smart systems comprising mechanical, electrical, and software components) is lectured as a first step. Fundamentals of the basic components needed for the design and control of mechatronic systems, including sensors, actuators, data acquisition systems, microprocessors, programmable logic controllers, and I/O (input/output) systems, are covered. Hands-on experience in designing and building practical mechatronic systems is provided through integrated lab activities. Especially, signal conditioners associated with PID (proportional-integral-derivative) controller are to be made by students.

Course Learning Objectives

- 1. Familiarity with Basic Configuration of Mechatronics
- 2. Familiarity with Basic Control Theory and Stability
- 3. Familiarity with Types of Sensors and Actuators
- 4. Familiarity with Signal Conditioning
- 5. Mechatronics Example- Robot Control

Textbook: W. Bolton, Mechatronics: Electronic Control Systems in Mechanical and Electrical Engineering, 6th Edition, Pearson, 2015 (ISBN-10: 1292076682): Textbook

References:

- 1. D. G. Alciatore, Introduction to Mechatronics and Measurement Systems, 5th Edition, McGraw-Hill Education, 2018 (ISBN-10: 1260048705)
- 2. K. Shin and J. Hammond, Fundamentals of Signal Processing for Sound and Vibration Engineers, John Wiley & Sons Ltd, 2008 (ISBN-10: 0470511885)
- 3. T. G. Beckwith et al, Mechanical Measurements, 6th Edition, Pearson 2007 (ISBN-10:0201847655)

Homework Assignment

- 1. Homework assignments will be assigned in the class.
- 2. Homework must be handed in at the end of the class on the specified due date.
- 3. You can either hand-write your solutions to homework or type them.
- 4. I will accept your homework as PDF file sent to my email address only.
- 5. Late homework will not be accepted in any case.
- 6. Do not forget to write your name and ID on the top of the first page

Individual Lab Practice

1. Each student should carry out at least two different experiments regarding to the signal conditioning:

Possible Candidates:

- ① OP Amplifier Circuit and Test (mandatory)
- 2 Integrator Circuit and Test (mandatory)
- 3 Differentiator Circuit and Test (mandatory)
- 4 Low and High Pass Filter (optional)
- 2. Lab report representing your experimental results should be submitted in due course.

Team Project for Robot Control

- 1. 2 or 3 students for one team
- 2. Choose arbitrary robot

- 3. Control of end effector (gripper)
- 4. Presentation of progress at least 2 times
- 5. PPT final presentation and submit the PPT file.

Class Examination

- 1. There will be only exam (150 minutes) at the end of PPT presentation.
- 2. The examination date will be announced two weeks in advance.

Grading Distribution

- 1. Attendance 10%
- 2. Homework: 20%
- 3. Examination: 35%
- 4. Team Project: 35%

Grading Scale

- 1. The final grade will be absolute based the following points
 - A: 95-100, A-: 90-95
 - B+: 85-90, B: 80-85, B-: 75-80
 - C+: 70-75, C: 65-70, C-: 60-65
 - D+: 55-60, D: 50-55
 - F: below 50
- 2. For graduate student: F: below 60

Tentative Course Schedule

Week 1: Introduction to Mechatronics

Week 2: Classification of Mechanical Systems & Modeling

Week 3: Transient and Steady State Responses (Matlab Practice)

Week 4: Feedback Control Theory

Week 5: System Stability

Week 6: Measurement of Mechanical Parameters

Week 7: Analog Circuits and Signals

Week 8: Digital Circuits and Signals

Week 9: Signal Conditioning (Theory), Individual Lab Assignment

Week 10: Robot Introduction

Week 11: Robot Kinematics

Week 12: Robot Dynamics

Week 13: Robot Control

Week 14: Project Concept Presentation

Week 15: Project Progress Presentation

Week 16: Project Final Presentation (PPT)

Week 17: Written Examination

What is the Mechatronics?

Mechatronics = **Mecha** from Mechanism and **Tronics** from Electronics (firstly used by Japanese engineer); **Mecha**nical + Elec**tronics**

The integration of mechanical engineering with electronics and control functions including sensors, actuators, microprocessors, signal conditioning, data acquisition system, etc.

- Control Theory
- System Response
- Sensors and Actuators
- Signal Processing and Conditioning
- Microprocessor
- Data Acquisition System (DAS)

Ex)

- 1) Beam Vibration Control System
- 2) Representative System: Robot Control